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Abstract—In this paper, a fast numerical method called the
sparse-matrix/canonical-grid (SM/CG) method is employed to
analyze densely packed microstrip interconnects that involve a
large number of unknowns. The mixed-potential integral equation
is solved by using the method of moments in the spatial domain.
The closed-form expressions of the spatial Green’s functions
of microstrip structures are obtained from the combination
of the fast Hankel transform and the matrix pencil method.
The Rao–Wilton–Glisson triangular basis functions are used to
convert the integral equation into a matrix equation. The matrix
equation is then solved by using the SM/CG method, in which
the far-interaction portion of the matrix–vector multiplication in
the iterative solution is performed by the fast Fourier transforms
(FFTs). This is achieved by the Taylor series expansions of the
spatial Green’s functions about the uniformly spaced canonical
grid points overlaying the triangular discretization. Numerical
examples are presented to illustrate the accuracy and efficiency
of the proposed method. The SM/CG method has computational
complexity of ( log ). Furthermore, being FFT-based
facilitates the implementation for parallel computation.

Index Terms—Fast Hankel transform, interconnects, SM/CG
method.

I. INTRODUCTION

DUE TO THE continuous increase of the operating fre-
quency of printed circuits, the full-wave electromagnetic

characterization of microstrip interconnects plays an im-
portant role in electronic packaging. A variety of numerical
methods have been developed in the past for the electromag-
netic simulation of the microstrip interconnects. One effective
and popular approach is the spatial-domain mixed-potential
integral-equation (MPIE) method in conjunction with the
Rao–Wilton–Glisson (RWG) triangular discretization [1] and
solving the integral equation by the method of moments (MoM).
The employment of the RWG basis function provides a good
flexibility to model arbitrarily shaped interconnects. Conven-
tional implementation of the MoM requires operations
and computer memory storage, where denotes the
number of unknowns. To provide more functionality and to
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reduce the size of the package, microstrip interconnects are often
packeddensely,making the numberofunknownsvery large. Fur-
thermore, calculation of matrix elements requires the evaluation
of the Sommerfeld integral, which involves a highly oscillatory
and slowly decaying kernel rendering inefficient computation
of the impedance matrix. These make the conventional MoM
implementation difficult when the problem scale becomes
large. Several fast and efficient methods have been developed to
improve the efficiency of the MoM by reducing the number of
computation operations and memory requirement, such as the
conjugate-gradient fast-Fourier-transform (CG–FFT) method
[2], [3], the fast multipole method (FMM) [4], [5], the adaptive
integral method (AIM) [6], [7], and the sparse-matrix/canon-
ical-grid (SM/CG) method. The computational complexity and
the memory requirement are reduced to and ,
respectively, in these fast algorithm.

Over the last few years, we have made significant progress on
the SM/CG method for solving large-scale random rough sur-
face scattering problems up to 1.5 million unknowns [8]–[10].
This method entails the decomposition of the impedance ma-
trix into strong near-field interaction and weak far-field inter-
action matrices. The far interactions, which require most of the
computation time in the matrix–vector multiplication (MVM)
of an iterative solution, can be computed simultaneously via
fast Fourier transforms (FFTs) if the Taylor series expansions of
the Green’s functions are performed about a uniformly spaced
canonical grid. Depending on the number of Taylor series terms,
the number of FFTs required in each iteration may still be too
large for efficient computation. To alleviate this difficulty, some
of the Taylor series terms are moved to the other side of the ma-
trix equation. This is the key difference between this method
and the similar AIM developed by Bleszynskiet al. [6]. We
have also successfully implemented the SM/CG method to an-
alyze microstrip structures with RWG triangular discretization
by transferring the triangular elements to a uniform grid through
expansion of the Green’s function to a Taylor series about the
uniform grid [9].

In the MPIE formulation, one needs the spatial-domain
Green’s functions for the magnetic vector potential and the
electric scalar potential. For layered media, these spatial-
domain Green’s functions are often expressed by their cor-
responding spectral counterparts in the form of Sommerfeld
integrals. To evaluate the Sommerfeld integral, several tech-
niques have been developed. One approximation approach is
the complex image method (CIM) [11], [12]. In this method,
the spectral-domain Green’s function is approximated by a
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sum of complex exponential terms, and these terms are then
transformed to the spatial domain using the Sommerfeld
identity, which results in a closed-form expression for the
spatial-domain Green’s function. As stated in [13], the suc-
cessful use of the CIM requires one to study in advance the
spectral-domain behavior of the Green’s function in order to
decide on the approximation parameters, such as the number of
sampling points and the maximum value of the sampling range,
when using a one-level CIM approach. The two-level approach
[13] is developed to provide more robust and accurate results.
Recently, the fast Hankel transform (FHT) method has been
successfully employed to calculate the spatial-domain Green’s
functions in multilayered structures [14]. This is an efficient nu-
merical method to obtain the spatial-domain Green’s functions.
In the FHT method, the Sommerfeld integration is performed
by a discrete convolution. The results of the integration can
be considered as the system response of a Hankel filter. The
filter function has an explicit series representation in which the
series coefficients decrease exponentially, making it possible to
evaluate them to any desired accuracy. Also, the error decreases
exponentially as the sampling density increases, which means
that even a moderate increase in sampling density will make
the error decrease drastically. These good features ensure that
the FHT approach is robust and efficient.

In our previous paper [9], the CIM method was applied to
obtain the spatial-domain Green’s function, which includes the
following three parts:

1) quasi-dynamic terms;
2) surface-wave terms;
3) complex image terms.

In each part, there are typically 3–4 terms, resulting in a total
of over ten terms to represent the Green’s function. To com-
bine with the SM/CG method, each term is then expanded by
Taylor series expansion leading to the use of the FFTs. In this
paper, the FHT method is applied to obtain the spatial-domain
Green’s function. The Green’s function obtained from the FHT
method is in numerical form, therefore, it is not suitable for the
SM/CG method since it is inconvenient to perform the Taylor
series expansion numerically. To give analytical expression to
the Green’s function, the numerical results of the FHT and the
quasi-dynamic and surface-wave contributions are combined to-
gether by representing them as a sum of complex exponentials,
which can be achieved by using the matrix pencil (MP) method
[15]. In general, seven complex exponential terms are sufficient
to match the spatial-domain Green’s function. The Taylor series
expansions of these complex exponentials are then incorporated
into the sparse-matrix/canonical grid (SM/CG) method. Asso-
ciated with the good features of the FHT, a fewer number of
terms to evaluate the Green’s function on the canonical grid are
needed in the algorithm of this paper, which makes the method
more efficient. The algorithm is implemented on a parallel com-
puting platform with a cluster of 16 personal computers (PCs).
These make the proposed algorithm available to analyze densely
packed interconnects efficiently. Numerical examples are pre-
sented to demonstrate the validity, accuracy, and efficiency of
the proposed method.

II. FORMULATION

Using the MPIE method to model the microstrip intercon-
nects, the excited field on the microstrip and the vector and
scalar potentials are related as [16]

(1)

where the vector and scalar potentials can be expressed by the
unknown surface current and the corresponding spatial Green’s
functions

(2)

(3)

The spatial-domain Green’s functions in the above equations
can be obtained from their spectral counterparts through
the Hankel transform as

(4)

where is the zeroth-order Hankel function of the second
kind, and is the radial separation between the source and ob-
servation points in the spatial domain. Applying the RWG basis
function to (1), produces the matrix equation

(5)

For densely packed microstrip interconnects, the number of un-
knowns will be comparatively large. The numerical integration
of the Sommerfeld integral of (4) is also time consuming. It is a
challenge to solve (5), as we have to address both the issues of
matrix fill time and matrix solution time. To solve the problem
efficiently, in this paper, the fast SM/CG method is used to solve
the matrix equation, in which the computational complexity and
memory requirement are and , respectively,
due to the use of FFTs to calculate the MVMs. The efficient nu-
merical FHT algorithm is applied to compute the Sommerfeld
integral.

A. SM/CG Method

In the SM/CG method [9], the matrix equation (5) is solved in
an iterative manner. The impedance matrix is decomposed into
the sum of a sparse matrix , denoting the strong neighbor-
hood interactions, and a dense matrix , denoting the weak
far interactions. Through Taylor expansion of the Green’s func-
tions, the matrix is further written as

(6)

where is the total number of terms of the expansion. The
iterative procedure is, for the zeroth- and high-order solutions

(7)
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(8)

Due to the translationally invariable kernels in the Green’s func-
tions, the weak-matrix vector multiplication can be efficiently
performed via the FFTs.

B. Closed-Form Spatial-Domain Green’s Functions from the
FHT

When using the FHT algorithm to calculate the Sommerfeld
integral, the integral is reduced to a discrete convolution and
the result is the response of a Hankel filter. Before applying the
FHT, the real poles of must be found and extracted since in
the FHT method, the integration path is along the real axis. The
contributions of these poles can be calculated by residue cal-
culus. After extracting the poles and some quasi-dynamic terms,
which can further smooth the Sommerfeld integrand, (4) can be
written as

(9)

where is the zeroth-order Bessel function. The superscript
represents the Green’s function after extracting the poles on the
real axis and quasi-dynamic terms. The numerical results of the
above integral are then obtained by the FHT algorithm, which
has been described in detail in [17] and is not given here.

In the FHT algorithm, the spectral-domain Green’s function
is sampled exponentially, which means that the sample will be
very dense for small . The Green’s function may have sharp
peaks and fast changes whenis small in the spectral domain,
which maps to the far-field region in the spatial domain [13].
Compared with the CIM, in which the sampling is uniform,
the dense sampling in the FHT algorithm when is small
can grasp the fast changes and, therefore, can provide more
robust and accurate results for the far-field region in the spatial
domain.

To obtain analytical expressions of spatial Green’s functions
from the numerical results of the FHT, we approximate them
by a sum of complex exponentials using the well-known MP
method [15] since the functions are always limited in a finite
spatial range and their arguments are real. The MP method is
more computationally efficient and robust at approximating a
function by a sum of complex exponentials than other methods,
such as the Prony’s method and the pencil-of-functions ap-
proach. However, in the MP method, the sampling points
are required to be uniform, although the direct results of the
FHT are exponentially sampled. To obtain a uniform sampled
sequence, we apply the same interpolating function used in the
FHT algorithm to obtain the spatial-domain Green’s functions
at arbitrary distance

(10)

Fig. 1. Direct and indirect computation of the interaction of a pair of triangles
on a canonical grid.

in which is the discrete numerical result of the FHT and
is the sampling interval. The interpolating function is

defined as

(11)

where is a smoothing parameter. Using (10), any desired uni-
form sampled sequence can be obtained. To reduce the total
number of terms in the closed-form expression of the Green’s
function and, therefore, the number of FFTs in the SM/CG al-
gorithm, the surface-wave and quasi-dynamic contributions are
combined together with (10) to obtain the whole spatial analyt-
ical Green’s function by applying the MP method. The expres-
sion as a sum of complex exponentials is

(12)

where is the number of complex exponential terms needed to
simulate the numerical sequence well, and are the coef-
ficients of the complex exponential terms, and is the min-
imum distance in the FHT algorithm because the term is
used in the FHT algorithm and the result is not available when

. can reach a very small value. When it is sufficiently
small, we can simply use the quasi-dynamic contributions to ap-
proximate the Green’s function for .

C. Taylor Series Expansion of the Spatial Green’s Function

As stated in [18], if the ratio of the maximum side of the
two interacting triangles to the separation of their centroids is
below 20%, a point-to-point evaluation of the Green’s function
weighted by the areas of the triangles is sufficient to approxi-
mate the Galerkin procedure. Efficient evaluation of the far-in-
teraction contributions in the MVM is reduced to efficient con-
volution between the Green’s function and current vector. In the
SM/CG algorithm applied to microstrip interconnects with tri-
angular discretization, the Taylor expansion of the Green’s func-
tion is performed as depicted in Fig. 1. The Green’s function be-
tween two points , and , , which are the centroids of
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(a) (b)

Fig. 2. Comparisons between the results for the spatial Green’s functions by the FHT and numerical integration. (a) Amplitude of the vector potentialG (�).
(b) Amplitude of the scalar potentialG (�). Permittivity of the dielectric substrate" = 12:6, thicknessh = 1 mm, frequencyf = 30 GHz.

(a) (b)

Fig. 3. Comparisons between the numerical results of the FHT and the analytical results of the MP method. (a) Real part ofG (�). (b) Imaginary part ofG (�).
Permittivity of the dielectric substrate" = 12:6, thicknessh = 1 mm, frequencyf = 30 GHz.

two interacting triangles, can be evaluated indirectly, first from
, to its nearest grid point , , then from ,

to another grid point , , and finally from , to
, . This indirect computation corresponds to Taylor series

expansion about the canonical grid point at , . This can
be performed symbolically using software such as Maple1

(13)

Substituting (12) into (13), the Taylor’s series expansion can
be obtained analytically. The evaluation of the MVM for the
far-interaction contributions can then be read as [9]

(14)

where the block-diagonal matrix corresponds to a pre-mul-
tiplication, while the other block-diagonal matrix corre-
sponds to a post-multiplication. Note that the pre-multiplica-
tion corresponds to shifting the centroids of the basis triangles
to their nearest grid points. The multiplication of the block-

1Maple is a registered trademark of Waterloo Maple Software, Waterloo, ON,
Canada.

Toeplitz matrix corresponds to computing all the interactions
among the uniformly canonical grid points. The final post-mul-
tiplication corresponds to translating the interactions at the grid
points back to the centroids of the testing triangles. The multi-
plication with the block-Toeplitz matrix can be then performed
by FFTs.

III. N UMERICAL RESULTS

Before applying the FHT algorithm, to prove its validity, the
comparisons between the results obtained by the FHT algorithm
and those obtained by a direct numerical integration are given in
Fig. 2(a) and (b) for the spatial Green’s functions of the vector
and scalar potentials and , respectively. The direct numer-
ical integration results are denoted by the notation of “” in
the figures. The microstrip structure considered is a single-lay-
ered dielectric substrate with ground plane. The thickness and
dielectric constant of the substrate are mm and ,
and the operation frequency is GHz. The direct numer-
ical integration is time consuming and the Green’s functions are
calculated in only a few points. However, for the FHT algorithm,
a large data sequence up to 300 different locations can be ob-
tained in a few seconds on a Pentium MMX 233 PC. It can be
seen from the figure that the FHT results agree well with those
obtained by direct numerical integration.

Figs. 3 and 4 give the comparisons between the numerical re-
sults of the FHT and the analytical results of the MP method
for the vector potential and the scalar potential ,
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(a) (b)

Fig. 4. Comparisons between the numerical results of the FHT and the analytical results of the MP method. (a) Real part ofG (�). (b) Imaginary part ofG (�).
Permittivity of the dielectric substrate" = 12:6, thicknessh = 1 mm, frequencyf = 30 GHz.

TABLE I
COEFFICIENTSOBTAINED BY THE MATRIX PENCIL METHOD FORFIGS. 3 AND 4 WHERE� = 0:02 � , AND � IS THEFREE-SPACE WAVELENGTH

respectively. Seven exponential terms are used to fit the numer-
ical results of the FHT. It is found that the two results agree very
well. The coefficients obtained by the MP method are tabulated
in Table I.

To validate our result, we calculate the scattering parameters
of a microstrip stub, for which measurement results are avail-
able in the literature, and compare the measurement results with
the computed results obtained by the SM/CG method associ-
ated with the FHT algorithm. The geometry and discretization
of the simulated microstrip stub are given in Fig. 5. The opera-
tion frequency is GHz. For the analysis using the trian-
gular MoM, the two ports extend 40 cells on each side in order
to obtain a sufficient number of current samples. The bilateral
symmetry in the stub is exploited in processing the port current
data. The computed current on the main line of this microstrip
stub obtained by the SM/CG with the FHT and that by a direct
matrix solution method in [19] are given in Fig. 6(a). The mea-
sured and the computed results of are shown in Fig. 6(b).
The measurement data are taken from [20]. Good agreement be-
tween the computed and measured results confirms the validity
of our method.

A group of 12 densely packed curved microstrip lines is
studied. The top view of these lines and their triangular dis-
cretization is shown in Fig. 7(a). The thickness and dielectric

Fig. 5. Geometry and discretization of a microstrip stub.

constant of the substrate are mm and .
The operation frequency is GHz. The horizontal
dimension of each line is 6.2 mm and the width is 0.3 mm.
The lines are separated by 0.2 mm. The canonical grid is set
at mm, which is about 30 points per linear
dielectric wavelength. Here a ten-term Taylor series expansion
is used. We excite only the first and the twelfth lines in Fig. 7(a)
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(a) (b)

Fig. 6. Comparison between the results of a microstrip stub by the SM/CG and direct solution [19]. (a) Current distribution along the main line of the microstrip
stub (frequency is 7.5 GHz). (b) Transmission response of the microstrip stub: measured [20] and computed by the SM/CG with the FHT.

(a) (b)

(c)

Fig. 7. Densely packed curved signal lines. (a) Geometry. (b) Current distributions on Line 1–Line 6. (c) Current distributions on Line 7–Line 12.

and observe the mutual coupling effects on the rest of the
lines. There are 8136 unknowns in this example. These parallel
signal lines are numbered from the bottom to top. The number
of the exponential summation in the MP method is selected
as seven. The induced current distributions on these lines are
shown in Fig. 7(b) and (c). From these figures, it is noted that
the excitation on the first and twelfth lines can induce different
current distributions on other signal lines. The total CPU time
for this problem is only about 5 min on a cluster of 16 PCs [21].
The Message Passing Interface (MPI) [22] and the MPI version
of the Fast Fourier Transform in the West (FFTW)2 [23] are
employed in the parallel computer code. Each PC has a Pentium
II 450-MHz processor with 256-MB RAM. Fig. 8 shows the

2Free FFTW 2.1.2 manual download. [Online]. Available: http://www.fftw.
org

convergence of the Bi-CGM for each order of the proposed
SM/CG method. The zeroth-order solution corresponds to
solving (7) while the subsequent orders correspond to that
of (8). Note that the number of iterations required is reduced
substantially when the order of the solution increases. Fig. 9
shows the convergence of the percentage error of the SM/CG
method. It can be seen that the percentage error is also reduced
substantially when the order of the iterative solution increases.

In our last numerical example, a very large-scale interconnect
in which the number of unknowns is over 36 000 is studied. The
top view of the geometry is shown in Fig. 10. The thickness
and dielectric constant of the substrate and operation frequency
are the same as those in the above example. The horizontal and
vertical dimensions are 6.2 and 6.1 mm, respectively. Since the
width of the small sections on both sides of the interconnect and
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Fig. 8. Convergence of the Bi-CGM for each order of the SM/CG method for
the example shown in Fig. 7.

Fig. 9. Convergence of the SM/CG method for the example shown in Fig. 7.

Fig. 10. Top view of the large-scale interconnect and the current distribution
on it.

the separation between adjacent small sections are only 0.1 mm,
the canonical grid is set at mm, resulting
in a total of 36 578 unknowns. The interconnect is excited in
the middle of the left-hand side. The total CPU time for this
problem is only about 30 min when a cluster of eight PCs is
used. The result of the current distribution on the interconnect
is also shown in Fig. 10.

IV. CONCLUSION

In summary, we have presented an SM/CG method for the
analysis of densely packed interconnects. The method entails
the use of Taylor series expansions of the spatial Green’s func-
tions obtained by the FHT and MP method. The majority of

the interactions among the current elements are computed si-
multaneously using FFTs. It requires much less CPU time and
memory when compared with the conventional conjugate gra-
dient iterative solver. Due to the use of the FFT, the proposed
method is particularly suitable for parallel computing platforms.
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