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Abstract—in this paper, a fast numerical method called the reduce the size of the package, microstrip interconnects are often
sparse-matrix/canonical-grid (SM/CG) method is employed to packed densely, making the number of unknowns very large. Fur-
analyze densely packed microstrip interconnects that involve a o mqre calculation of matrix elements requires the evaluation

large number of unknowns. The mixed-potential integral equation . S . .
is solved by using the method of moments in the spatial domain. ©f the Sommerfeld integral, which involves a highly oscillatory

The closed-form expressions of the spatial Green’s functions and slowly decaying kernel rendering inefficient computation
of microstrip structures are obtained from the combination of the impedance matrix. These make the conventional MoM
of the fast Hankel transform and the matrix pencil method. implementation difficult when the problem scale becomes

The Rao-Wilton—Glisson triangular basis functions are used to | S | fast and efficient methods h b d | dt
convert the integral equation into a matrix equation. The matrix arge. oeveral iast and etiicient memods nave bech developedto

equation is then solved by using the SM/CG method, in which improve the efficiency of the MoM by reducing the number of
the far-interaction portion of the matrix—vector multiplication in ~ computation operations and memory requirement, such as the
the iterative solution is performed by the fast Fourier transforms  copjugate-gradient fast-Fourier-transform (CG—FFT) method

(FFTs). This is achieved by the Taylor series expansions of the . .
spatial Green'’s functions about the uniformly spaced canonical [2], [3], the fast multipole method (FMM) [4], [5], the adaptive

grid points overlaying the triangular discretization. Numerical ~integral method (AIM) [6], [7], and the sparse-matrix/canon-
examples are presented to illustrate the accuracy and efficiency ical-grid (SM/CG) method. The computational complexity and

of the proposed method. The SM/CG method has computational the memory requirement are reduced@V log N) andO(N),
complexity of O(Nlog N). Furthermore, being FFT-based respectively, in these fast algorithm
facilitates the implementation for parallel computation. ’ ) L
_ Over the last few years, we have made significant progress on
I?r?eé( Terms—Fast Hankel transform, interconnects, SM/CG  the SM/CG method for solving large-scale random rough sur-
method. face scattering problems up to 1.5 million unknowns [8]-[10].
This method entails the decomposition of the impedance ma-
|. INTRODUCTION trix into strong near-field interaction and weak far-field inter-

UE TO THE continuous increase of the operating frea_\ctlon matrices. The far interactions, which require most of the

quency of printed circuits, the full-wave electromagnetiﬁompUtat'on time in the matrix—vector multiplication (MVM)

characterization of microstrip interconnects plays an i f an lterative solution, can b? computed swpultaneougly via
ggzt Fourier transforms (FFTs) if the Taylor series expansions of

ortant role in electronic packaging. A variety of numerical ) .
P P ging y > Green'’s functions are performed about a uniformly spaced

methods have been developed in the past for the electrom ical arid. D di th ber of Tavl as t
netic simulation of the microstrip interconnects. One effecti nonicaignad. bepending on the number of 1aylor series lerms,
number of FFTs required in each iteration may still be too

and popular approach is the spatial-domain mixed-potent for efficient tation. To alleviate this difficult
integral-equation (MPIE) method in conjunction with th arge for eflicient computation. o afleviate this difficulty, some

Rao-Wilton-Glisson (RWG) triangular discretization [1] an(?f, the Tay!or series terms are mpved to the other Slde. of the ma-
%;‘x equation. This is the key difference between this method

Iving the int I tion by th thod of ts (MoM).
solving the integral equation by the method of moments (Mo d the similar AIM developed by Bleszynséi al. [6]. We

The employment of the RWG basis function provides a go .
flexibility to model arbitrarily shaped interconnects. Conventave also successully implemented the SM/CG method to an-

tional implementation of the MoM require3(V®) operations alyze micro.strip struptures with RWG triangu_lar disc.retization
and O(V2) computer memory storage, whee denotes the by trangferrmg the tnang'ular ele.ments toa unlform.grld through
number of unknowns. To provide more functionality and tgxpansmn_of the Green'’s function to a Taylor series about the
uniform grid [9].
In the MPIE formulation, one needs the spatial-domain

Green’s functions for the magnetic vector potential and the
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sum of complex exponential terms, and these terms are then Il. FORMULATION
transformed to the spatial domain using the SommerfeldUsing the MPIE method to model the microstrip intercon-

|denj[|ty, Wh'c_h results in a (_:Iosed-form expression for thﬁects, the excited field on the microstrip and the vector and
spatial-domain Green’s function. As stated in [13], the sug. ., potentials are related as [16]

cessful use of the CIM requires one to study in advance the

spectral-domain behavior of the Green’s function in order to Em = jm A+ Vo 1)
decide on the approximation parameters, such as the number of

sampling points and the maximum value of the sampling rang@here the vector and scalar potentials can be expressed by the
when using a one-level CIM approach. The two-level approaghknown surface current and the corresponding spatial Green’s
[13] is developed to provide more robust and accurate resufignctions

Recently, the fast Hankel transform (FHT) method has been

successfully employed to calculate the spatial-domain Green'’s A’(f’) = / dS’ﬁa (r’ ;/) . j(;/) 2)
functions in multilayered structures [14]. This is an efficient nu- s

merical method to obtain the spatial-domain Green'’s functions. N , N

In the FHT method, the Sommerfeld integration is performed (1) = /S 457Gy (7’ ! )V J(7 ) ©)

by a discrete convolution. The results of the integration can i ) , ) . )
be considered as the system response of a Hankel filter. THE Spatial-domain Green's functions in the above equations

filter function has an explicit series representation in which tHE" be obtained from their spectral counterpéis, through

series coefficients decrease exponentially, making it possibleﬂﬂg Hankel transform as

evaluate them to any desired accuracy. Also, the error decreases Foo )
exponentially as the sampling density increases, which means ~ Ga,4(p) = / Ga,q(kp)Hy " (kpp) by dk, 4)
that even a moderate increase in sampling density will make -

the error decrease drastically. These good features ensure \;vh?éreHSQ) is the zeroth-order Hankel function of the second
the FHT approach is robust and efficient. kind, andp is the radial separation between the source and ob-

In our previous paper [9], the CIM method was applied t@ervation points in the spatial domain. Applying the RWG basis
obtain the spatial-domain Green'’s function, which includes thgnction to (1), produces the matrix equation

following three parts:

1) quasi-dynamic terms; (211 =V. (5)
2) surface-wave terms;
3) complex image terms. For densely packed microstrip interconnects, the number of un-

In each part, there are typically 3—4 terms, resulting in a totpowns will be comparatively 'a“-?le- The.numerical in'tegrat'ion
of over ten terms to represent the Green's function. To conﬂtthe Sommerfeld integral of (4) is also time consuming. Itis a

bine with the SM/CG method, each term is then expanded BE}a”,e”%Je 'to solve (5), aswe hf';\ve jto address both the issues of
Taylor series expansion leading to the use of the FFTs. In ypatrix fill ime and matrix solution time. To solve the problem
in this paper, the fast SM/CG method is used to solve

paper, the FHT method is applied to obtain the spatial-domaqwdeml}" P ) . .
Green’s function. The Green’s function obtained from the FHIP€ Matrix équation, in which the computational complexity and

method is in numerical form, therefore, it is not suitable for tr;gemor)r/] requwefment ar@(Nllogi; N) ﬁndO(N)’ rispef(f:.tn./ely,
SM/CG method since it is inconvenient to perform the Tayl ue to the use of FFTs to calculate the MVMs. The efficient nu-

series expansion numerically. To give analytical expression %erlcal FHT algorithm is applied to compute the Sommerfeld

the Green'’s function, the numerical results of the FHT and tl%tegral.

guasi-dynamic and §urface—wave contributions are comblneq q— SM/CG Method

gether by representing them as a sum of complex exponentials,

which can be achieved by using the matrix pencil (MP) method In the SM/CG method [9], the matrix equation (5) is solved in
[15]. In general, seven complex exponential terms are sufficieti iterative manner. The impedance matrix is decomposed into
to match the spatial-domain Green’s function. The Taylor seri¥ sum of a sparse matri&], denoting the strong neighbor-
expansions of these complex exponentials are then incorpordt€@d interactions, and a dense mafX’], denoting the weak
into the sparse-matrix/canonical grid (SM/CG) method. Asséar interactions. Through Taylor expansion of the Green’s func-
ciated with the good features of the FHT, a fewer number §pns, the matri{Z*] is further written as

terms to evaluate the Green’s function on the canonical grid are X

needed in the algorithm of this paper, which makes the method [Zw] _ Z [Zl“’] (6)
more efficient. The algorithm is implemented on a parallel com- !
puting platform with a cluster of 16 personal computers (PCs).
These make the proposed algorithm available to analyze dendifiere K is the total number of terms of the expansion. The
packed interconnects efficiently. Numerical examples are piterative procedure is, for the zeroth- and high-order solutions

sented to demonstrate the validity, accuracy, and efficiency of ,
the proposed method. {[ZS] + [Z] }IO =V @

=0
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K

{2+ (28]}t =V - { > [z }In. 8)

=1

f /’y )
Due to the translationally invariable kernels in the Green’s func- f 2\2 3
tions, the weak-matrix vector multiplication can be efficiently A, \
performed via the FFTs. * ﬁ.i,yi)

B. Closed-Form Spatial-Domain Green’s Functions from the (xi0,Yi
FHT - A,

When using the FHT algorithm to calculate the Sommerfeld
integral, the integral is reduced to a discrete convolution and
the result is the response of a Hankel filter. Before applying tif@. 1. Direct and indirect computation of the interaction of a pair of triangles
FHT, the real poles af/,, must be found and extracted since if?" & canonical grid.
the FHT method, the integration path is along the real axis. The
contributions of these poles can be calculated by residue cal- , . . . .
culus. After extractingtr?e poles and some quasi-dznamicter ' ,Wh'Ch G"is _the_d|screte numerlcal re;ult of th_e FHT and
which can further smooth the Sommerfeld integrand, (4) can Y the sampling interval. The interpolating functistfx) is
written as

efined as

Plu) = asin(mu)

~ sinh(anu) (11)

+oo
Gy =2 [ Gk Ia(bn) ity (©)
0 whereq is a smoothing parameter. Using (10), any desired uni-

. . ._form sampled sequence can be obtained. To reduce the total
where.Jy is the zeroth-order Bessel function. The superseript : . :
umber of terms in the closed-form expression of the Green'’s

represgnts the Grgen S fun_ct|on after extractmg the poles on pﬂﬁction and, therefore, the number of FFTs in the SM/CG al-
real axis and quasi-dynamic terms. The numerical results of the

above integral are then obtained by the FHT algorithm, whi%ﬁ ::Sir:é;h; Sg':;ae(;ev;/\il:r?\g(?)rlg glé?asilr;ti)r/]r;avryr:glzosntgggltlggzlatr_e
has been described in detail in [17] and is not given here. 9 P Y

In the FHT algorithm, the spectral-domain Green’s functio'rtfal Green’s function by applying the_: MP method. The expres-
. . . . -sion as a sum of complex exponentials is
is sampled exponentially, which means that the sample will g’e
very dense for smalt,. The Green’s function may have sharp
peaks and fast changes whignis small in the spectral domain,
which maps to the far-field region in the spatial domain [13].
Compared with the CIM, in which the sampling is uniform,
the dense sampling in the FHT algorithm whep is small . .

Ping g A herelN is the number of complex exponential terms needed to

can grasp the fast changes and, therefore, can provide mare

robust and accurate results for the far-field region in the spatféﬁnu'ate the numerical sequence wétj, and5; are the coef-

domain. icients of the complex exponential terms, angl,, is the min-

To obtain analytical expressions of spatial Green’s functiofg M distance in the FHT algorithm because the témp is

from the numerical results of the FHT, we approximate theH1sed in the FHT algorithm and the result is not available when

by a sum of complex exponentials using the well-known MP = 0. pmin can reach a very small value. When it is sufficiently

method [15] since the functions are always limited in a finitgma"’ we can simply use the quasi-dynamic contributions to ap-

spatial range and their arguments are real. The MP methotﬂgx'mate the Green’s function fOr< < puin-

more computationally efficient and robust at approximating
function by a sum of complex exponentials than other metho
such as the Prony’s method and the pencil-of-functions ap-As stated in [18], if the ratio of the maximum side of the

proach. However, in the MP method, the sampling point#o interacting triangles to the separation of their centroids is
are required to be uniform, although the direct results of ttiglow 20%, a point-to-point evaluation of the Green'’s function
FHT are exponentially sampled. To obtain a uniform sampl&geighted by the areas of the triangles is sufficient to approxi-
sequence, we apply the same interpolating function used in thate the Galerkin procedure. Efficient evaluation of the far-in-
FHT algorithm to obtain the spatial-domain Green’s functiori§raction contributions in the MVM is reduced to efficient con-

at arbitrary distance volution between the Green'’s function and current vector. In the

SM/CG algorithm applied to microstrip interconnects with tri-
L | angular discretization, the Taylor expansion of the Green’s func-
G (p) == G(mA)P % —m (10) tionis performed as depicted in Fig. 1. The Green's function be-
P tween two point§z;, y;) and(x;, y;), which are the centroids of

v
Gaolp) =Y Riexp [Si(o—puin)]  (12)
=1

Cé. Taylor Series Expansion of the Spatial Green’s Function
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Fig. 2. Comparisons between the results for the spatial Green’s functions by the FHT and numerical integration. (a) Amplitude of the vectd® pgsential
(b) Amplitude of the scalar potentiél,(p). Permittivity of the dielectric substrate = 12.6, thickness: = 1 mm, frequencyf = 30 GHz.
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Fig. 3. Comparisons between the numerical results of the FHT and the analytical results of the MP method. (a) Real fart @f) Imaginary part o7, (p).
Permittivity of the dielectric substrate. = 12.6, thicknessh = 1 mm, frequencyf = 30 GHz.

two interacting triangles, can be evaluated indirectly, first fromoeplitz matrix corresponds to computing all the interactions
(x;,y;) toits nearest grid poirite jo, ¥;0), then from(z;o, y;0) among the uniformly canonical grid points. The final post-mul-

to another grid pointx;o, %i0), and finally from(x;0, vi0) to tiplication corresponds to translating the interactions at the grid
(z;, ¥:). This indirect computation corresponds to Taylor serigmints back to the centroids of the testing triangles. The multi-
expansion about the canonical grid poinfaj, ¥:0). This can plication with the block-Toeplitz matrix can be then performed

be performed symbolically using software such as Maple by FFTs.

=SSV % illl ﬁl' “722' ygj?' l1l. N UMERICAL RESULTS
myi. 1. Mo. Na. . . . .
mi n1 mz ng Before applying the FHT algorithm, to prove its validity, the
grutmz  gritne . . comparisons bgtween the_ results obt{;\ine.d by thg FHT algprithm
Tgpmitme oyt G \/%a,; TYa, |- (13)  and those obtained by a direct numerical integration are given in
i0 0 Fig. 2(a) and (b) for the spatial Green’s functions of the vector
:frpd scalar potentialS, andG, respectively. The direct numer-
écal integration results are denoted by the notation®f" in
the figures. The microstrip structure considered is a single-lay-
ered dielectric substrate with ground plane. The thickness and
K K dielectric constant of the substrate Are- 1 mm ande,. = 12.6,
[Z*]1,= {Z [Z] } I,= {Z [13.][G][ 1] } I, (14) and the operation frequency js= 30 GHz. The direct numer-
i—0 im0 ical integration is time consuming and the Green'’s functions are
calculated in only a few points. However, for the FHT algorithm,
where the block-diagonal matri’;] corresponds to a pre-mul- 3 |arge data sequence up to 300 different locations can be ob-
tiplication, while the other block-diagonal matr{f;] corre- tained in a few seconds on a Pentium MMX 233 PC. It can be
sponds to a post-multiplication. Note that the pre-multiplicaseen from the figure that the FHT results agree well with those
tion corresponds to shifting the centroids of the basis trianglestained by direct numerical integration.
to their nearest grid points. The multiplication of the block- Figs. 3 and 4 give the comparisons between the numerical re-
ults of the FHT and the analytical results of the MP method
or the vector potential7,(p) and the scalar potenti&¥,(p),

Substituting (12) into (13), the Taylor’s series expansion ¢
be obtained analytically. The evaluation of the MVM for th
far-interaction contributions can then be read as [9]

IMaple is a registered trademark of Waterloo Maple Software, Waterloo, O
Canada.
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Fig. 4. Comparisons between the numerical results of the FHT and the analytical results of the MP method. (a) R&z) payt (f) Imaginary part o7, (p).
Permittivity of the dielectric substrate. = 12.6, thicknessh = 1 mm, frequencyf = 30 GHz.

COEFFICIENTSOBTAINED BY THE MATRIX PENCIL METHOD FORFIGS. 3 AND 4 WHERE p i, = 0.02 Ag, AND A IS THE FREE-SPACE WAVELENGTH

respectively. Seven exponential terms are used to fit the numer- /

TABLE |

G

a

G

4

R.

i

S,

i

R,

S

i

1.98649678E-01
-j2.68768944E-01

-5.92961664E-02
-11.04468009E+01

-2.33506784E-02
+j5.19854948E-02

-1.18638170E-01
-j1.65569056E+01

2.14481632E-01
-j3.30789091E-01

-6.02740275E-01
-11.04849367E+01

4.79107187E-02
-j2.33306361E-01

-1.37366352E-01
-j1.03542319E+01

2.97952599E-03

-9.20779501E-01

6.62071631E-02

-2.26041477E-01

+j1.09885799E-02 -j5.91494480E+00 +j3.15331622E-02 -11.00544855E+01
2.71402774E-01 -2.24105778E+00 -2.43300046E-02 -9.32259980E-01
-15.33903279E-01 -11.03397092E+01 -17.97790978E-03 -15.69177898E+00
1.06517881E+00 -9.04551702E+00 -2.37257004E-02 -1.30378583E+00
-17.24017738E-01 -j9.14739428E+00 +j7.51757375E-02 -11.63846967E+01
1.56054385E+00 -3.24670142E+01 2.39326696E-01 -2.42149778E+00
-j2.35037804E-01 -j1.12322684E+01 -j2.65438672E-01 -j1.04341319E+01
1.61224918E+00 -9.51377390E+01 4.53930203E-01 -5.49750530E+01

-j3.69420108E-01

-j1.08120762E+01

-11.02221850E-01

-j1.22873125E+01

ical results of the FHT. Itis found that the two results agree very !

well. The coefficients obtained by the MP method are tabulated

in Table I.

To validate our result, we calculate the scattering parameters
of a microstrip stub, for which measurement results are avail- /
able in the literature, and compare the measurement results with /
the computed results obtained by the SM/CG method associ-
ated with the FHT algorithm. The geometry and discretization

|.44mm

of the simulated microstrip stub are given in Fig. 5. The opera-

tion frequency isf = 7.5 GHz. For the analysis using the trian- ,
gular MoM, the two ports extend 40 cells on each side in orde ::=

r, = s

to obtain a sufficient number of current samples. The bilatere 2 5 s
symmetry in the stub is exploited in processing the port currer..

data. The computed current on the main line of this microstrlip .
stub obtained by the SM/CG with the FHT and that by a direct”

matrix solution method in [19] are given in Fig. 6(a). The mea-

20 30

50

Geometry and discretization of a microstrip stub.

sured and the computed results$f, are shown in Fig. 6(b). constant of the substrate ale = 1 mm ande, = 12.6.

The measurement data are taken from [20]. Good agreementhee operation frequency i = 30 GHz. The horizontal

tween the computed and measured results confirms the validifiynension of each line is 6.2 mm and the width is 0.3 mm.

of our method. The lines are separated by 0.2 mm. The canonical grid is set
A group of 12 densely packed curved microstrip lines iat dz = dy = 0.1 mm, which is about 30 points per linear

studied. The top view of these lines and their triangular dighelectric wavelength. Here a ten-term Taylor series expansion

cretization is shown in Fig. 7(a). The thickness and dielectris used. We excite only the first and the twelfth lines in Fig. 7(a)
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Fig. 6. Comparison between the results of a microstrip stub by the SM/CG and direct solution [19]. (a) Current distribution along the main lineroéttip mi
stub (frequency is 7.5 GHz). (b) Transmission response of the microstrip stub: measured [20] and computed by the SM/CG with the FHT.
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Fig. 7. Densely packed curved signal lines. (a) Geometry. (b) Current distributions on Line 1-Line 6. (c) Current distributions on Line 7—Line 12.

and observe the mutual coupling effects on the rest of thenvergence of the Bi-CGM for each order of the proposed
lines. There are 8136 unknowns in this example. These paral®fl/CG method. The zeroth-order solution corresponds to
signal lines are numbered from the bottom to top. The numbsolving (7) while the subsequent orders correspond to that
of the exponential summation in the MP method is selected (8). Note that the number of iterations required is reduced
as seven. The induced current distributions on these lines aubstantially when the order of the solution increases. Fig. 9
shown in Fig. 7(b) and (c). From these figures, it is noted thahows the convergence of the percentage error of the SM/CG
the excitation on the first and twelfth lines can induce differembethod. It can be seen that the percentage error is also reduced
current distributions on other signal lines. The total CPU timsubstantially when the order of the iterative solution increases.
for this problem is only about 5 min on a cluster of 16 PCs [21]. In our last numerical example, a very large-scale interconnect
The Message Passing Interface (MPI) [22] and the MPI versionwhich the number of unknowns is over 36 000 is studied. The
of the Fast Fourier Transform in the West (FFTWN23] are top view of the geometry is shown in Fig. 10. The thickness
employed in the parallel computer code. Each PC has a Pentiand dielectric constant of the substrate and operation frequency

Il 450-MHz processor with 256-MB RAM. Fig. 8 shows theare the same as those in the above example. The horizontal and
vertical dimensions are 6.2 and 6.1 mm, respectively. Since the

°Free FFTW 2.1.2 manual download. [Online]. Available: http:// fftw,
org et com [Online]. fval PN, vidith of the small sections on both sides of the interconnect and
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Fig. 9. Convergence of the SM/CG method for the example shown in Fig. 7.
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Fig. 10. Top view of the large-scale interconnect and the current distributior#lz]
on it.
[13]

the separation between adjacent small sections are only 0.1 mm,
the canonical grid is set atv = dy = 0.05 mm, resulting

in a total of 36 578 unknowns. The interconnect is excited ir{m]
the middle of the left-hand side. The total CPU time for this
problem is only about 30 min when a cluster of eight PCs id15]
used. The result of the current distribution on the interconnect
is also shown in Fig. 10. [16]

IV. CONCLUSION

In summary, we have presented an SM/CG method for th&7]
analysis of densely packed interconnects. The method entaifsl
the use of Taylor series expansions of the spatial Green'’s func-
tions obtained by the FHT and MP method. The majority of
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the interactions among the current elements are computed si-
multaneously using FFTs. It requires much less CPU time and
memory when compared with the conventional conjugate gra-
dient iterative solver. Due to the use of the FFT, the proposed
method is particularly suitable for parallel computing platforms.
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